ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ, 2013, том 4, № 9–10, с. 795–798

= ЯДРО-ЯДЕРНЫЕ ВЗАИМОДЕЙСТВИЯ И КВАРК-ГЛЮОННАЯ ПЛАЗМА =

УДК 539.17

РОЖДЕНИЕ *п*⁰ МЕЗОНОВ В *pp* И Рb−Рb СТОЛКНОВЕНИЯХ НА LHC В ЭКСПЕРИМЕНТЕ ALICE

© 2013 г. Д. С. Блау, коллаборация ALICE

НИЦ "Курчатовский Институт" e-mail: dmitry.blau@cern.ch. Поступило в редакцию 30.05.2013 г.

Нами представлены спектры π^0 , η и ω мезонов в протон-протонных столкновениях, а также спектр π^0 мезонов в Pb—Pb столкновениях, измеренных ALICE при энергиях LHC. π^0 и η мезоны реконструируются по их двухфотонным распадам с помощью двух взаимодополняющих методов: в электромагнитных калориметрах и методом фотонной конверсии; результаты измерений находятся в согласии друг с другом. Проведено сравнение фактора ядерной модификации (R_{AA}) π^0 мезонов в Pb—Pb столкновениях при различных центральностях столкновения с измерениями при низких энергиях и теоретическими предсказаниями.

Ключевые слова: гамма-спектрометр, электромагнитный калориметр, столкновения тяжелых ионов, кварк-глюонная плазма, нейтральные мезоны.

DOI: 10.1134/S2079562913090108

1. ВВЕДЕНИЕ

Нейтральные мезоны, в частности – π^0 и η мезоны, могут быть реконструированы и идентифицированы по их двухфотонным распадам в широком спектре поперечных импульсов. Таким образом, они являются прекрасным средством для проверки предсказаний КХД рождения мезонов в протон-протонных столкновениях и оценки энергетических потерь партонов в ядро-ядерных столкновениях. С помощью таких измерений при энергиях LHC можно установить партонные функции распределения (PDF) и функции фрагментации (FF) в новой кинематической области, а также получить ограничения на эти величины в области низких *x* и *z*.

Выход мезонов при энергиях LHC главным образом обусловлен глюонной фрагментацией вплоть до поперечного импульса ~100 ГэВ/с [1], поэтому именно этот кинематический режим идеально подходит для исследования кварковых и еще менее изученных глюонных функций фрагментации. Измерения фактора ядерной модификации (R_{AA}) рождения π^0 мезонов в Pb—Pb столкновениях позволит получить ясное представление об этой величине для идентифицированных частиц без использования неоднозначностей, возникающих при разделении протонов, каонов и пионов в случае измерения подавления идентифицированных заряженных адронов.

2. ОПИСАНИЕ УСТАНОВКИ ALICE

Фотоны от распадов нейтральных мезонов могут быть зарегистрированы как с помощью электромагнитных калориметров PHOS и EMCAL, так и с помощью реконструкции e^+e^- пары в центральной трековой системе ALICE в случае, если они конвертируют на веществе внутренних детекторов ALICE. Три указанных способа идентификации независимы и могут быть использованы одновременно. Нами представлены результаты, полученные с помощью PHOS и метода фотонной конверсии.

Электромагнитный калориметр PHOS [3] состоит из кристаллов PbWO₄ с высокой гранулярностью (размер кристалла составляет $2.2 \times 2.2 \times 18$ см³, а расстояние до точки столкновения составляет 4.6 м), хорошим энергетическим и пространственным разрешением. PHOS покрывает область псевдобыстрот $|\eta| < 0.125$ и 60° по азимутальному углу. Были приложены все усилия, чтобы уменьшить количество вещества перед PHOS: его величина составляет всего лишь $0.2X_0$. Благодаря таким условиям фотоны от π^0 -распадов могут быть разделены в PHOS вплоть до $p_{\rm T}^{\pi} \sim 50$ ГэВ/*с*.

В случае метода фотонной конверсии треки реконструируются в трековой системе ALICE, которая состоит из внутренней трековой системы (ITS) [4] и время-проекционной камеры (TPC). Треки-кандидаты выбираются с помощью алгоритма поиска вершины (V0). Дальнейшая очистка спектра от загрязнений, таких как K_S^0 , Λ , $\overline{\Lambda}$, производится с помощью метода идентификации

Рис. 1. Слева: спектр π^0 мезонов в pp столкновениях при трех энергиях столкновения и сравнение с предсказаниями пертурбативной КХД и функции Цаллиса. Справа: отношение измеренного спектра к функции Цаллиса в сравнении с предсказаниями пертурбативной КХД по отношению к функции Цаллиса. Теория воспроизводит данные при энергии $\sqrt{s} = 0.9$ ТэВ, но переоценивает их при 2.76 и 7 ТэВ [2].

электронов по их dE/dx, а также отбору по углу разлета.

3. ПРОТОН-ПРОТОННЫЕ СТОЛКНОВЕНИЯ

Спектр π^0 мезонов при трех энергиях столкновения был измерен в ALICE по данным 2010-2011 годов, см. рис. 1. Набранная статистика соответствует примерно интегральной светимости, равной 0.14 нб⁻¹, 0.7 нб⁻¹ и 5.6 нб⁻¹ для энергий $\sqrt{s} = 0.9, 2.76$ и 7 ТэВ, соответственно. Измерения спектров проводились независимо двумя способами: методом фотонной конверсии и в PHOS. Результаты согласуются между собой и представлены в виде объединенного спектра в сравнении с предсказаниями пертурбативной КХД [6]. Также нами представлена аппроксимация измерений функцией Цаллиса, позволяющая представить результаты в более наглядной форме: отношения данных к аппроксимации и предсказаний к аппроксимации, представленные на рис. 1 справа. Нами показано, что теоретические предсказания воспроизводят спектр π^0 мезонов при энергии столкновения $\sqrt{s} = 900$ ГэВ, но значительно переоценивают рождение π^0 мезонов при более высоких энергиях.

Спектр η мезонов в ALICE измерялся по тем же данным и для тех же энергий, что и спектр π^0 мезонов [2]. Сравнение спектра η мезонов с теоретическими предсказаниями дает схожие результаты: пертурбативная КХД воспроизводит данные при $\sqrt{s} = 900$ ГэВ, но переоценивает рож-

дение η мезонов при более высоких энергиях. Измеренные спектры позволяют построить отношение η/π^0 в зависимости от поперечного импульса. Эти отношения при трех энергиях LHC согласуются между собой и с измерениями, полученными на более низких энергиях. В отличие от самих спектров, отношения спектров этих двух мезонов согласуется и с пертурбативными предсказаниями.

Помимо спектров π^0 и η мезонов, были проведены измерения спектра ю мезонов в протонпротонных столкновениях при $\sqrt{s} = 7$ ТэВ. В условиях низкой множественности частиц в протонпротонных столкновениях наилучшим каналом распада ω мезона служит $\omega \pi^0 \pi^+ \pi^-$ с бренчингом 89.2%. Нами представлены результаты, полученные из данных 2010 года. Было обработано 400 миллионов событий, что соответствует интегральной светимости, равной 6 нб⁻¹. Заряженные π-мезоны реконструировались в центральной трековой системе, в то время как нейтральные - в PHOS. Спектр представлен на рис. 2 слева. К сожалению, поскольку функция фрагментации ω мезонов на настоящий момент неизвестна, не представляется возможным сравнить эти измерения с предсказаниями пертурбативной КХД. Измерения спектра ю мезонов в широком диапазоне поперечных импульсов, проведенные ALICE, могут быть использованы в качестве исходных данных для возможной области параметризации фрагментационных функций ω мезона.

Отношение ω/π^0 представлено на рис. 2 справа. Видно, что наклон спектров сближается при

Рис. 2. Слева: спектр ω мезонов, измеренный в протон-протонных столкновениях при $\sqrt{s} = 7$ ТэВ. Справа: отношение ω/π^0 , измеренное в протон-протонных столкновениях при $\sqrt{s} = 7$ ТэВ. Пунктиром обозначено среднее значение для асимптотики этого отношения по различным экспериментам на более низких энергиях.

Рис. 3. Слева: фактор ядерной модификации (R_{AA}) π^0 , измеренный в 20% самых центральных Pb—Pb столкновениях в сравнении с R_{AA} в Pb—Pb и Au—Au столкновениях при более низких энергиях. Справа: R_{AA} в 20% самых центральных и 60–80% периферичных столкновениях в сравнении с теоретическими предсказаниями.

№ 9-10

2013

 $p_{\rm T} \ge 4 \ \Gamma \ni B/c$, а относительный выход ω мезонов согласуется с измерениями, полученными другими экспериментами при более низких энергиях в протон-протонных столкновениях, и составляет ~0.8 [7].

4. РВ-РВ СТОЛКНОВЕНИЯ

Ядро-ядерные столкновения характеризуются высокой загруженностью детекторов, что приводит к высокой вероятности перекрытия кластеров и высокому комбинаторному фону. Тем не менее, ALICE получила спектры π^0 в нескольких диапазонах центральности в Pb—Pb столкновениях при

3 ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ ТОМ 4

 $\sqrt{s_{NN}} = 2.76$ ТэВ. Эти измерения вместе с результатами, полученным в протон-протонных столкновениях при той же энергии, позволяют получить фактор ядерной модификации R_{AA} . Нами представлен R_{AA} в 20% наиболее центральных столкновениях (рис. 3, слева). Для сравнения приведены результаты измерения R_{AA} при более низких энергиях в экспериментах WA98 [8] и PHENIX [9]. Нами показано, что, начиная с наименьших энергий RHIC, форма R_{AA} не меняется, в то время как величина подавления постепенно увеличивается с ростом энергии столкновения.

Измеренный фактор ядерной модификации сравнивается с несколькими теоретическими мо-

делями (см. рис. 3, справа). Модель WHDG [10] учитывает потерю энергии партона на излучение и столкновения, а также геометрическую длину пути в флуктуациях. Плотность цветового заряда среды предполагается пропорциональной числу нуклунов-участников, полученной в модели Глаубера. Модель WHDG воспроизводит как величину подавления, так и зависимость от центральности. Вычисления по модели НТ [11] отличаются от модели WHDG в реализации моделирования свойств вещества. Так, добавляется пространственно-временная эволюция вещества в рамках 3 + 1-мерной идеальной гидродинамики. Предсказания этой модели согласуются с данными в области наиболее центральных столкновений, но не позволяют воспроизвести зависимость от центральности.

В каждой из двух представленных моделей [12] возможны два случая: провести вычисления, рассчитывая энергетические потери партонов только в конечном состоянии, или же учитывать энергетические потери начального партона и расширение поперечного импульса начальных партонов в холодном ядерном веществе. Оба варианта согласуются с данными, однако наилучшее согласие наблюдается в том случае, если учитывается распространение частиц, как в начальном, так и в конечном состоянии.

5. ЗАКЛЮЧЕНИЕ

Нами представлены спектры нейтральных мезонов, измеренных коллаборацией ALICE в протон-протонных столкновениях при $\sqrt{s} = 0.9, 2.76$ и 7 ТэВ, а также фактор ядерной модификации π^0 мезонов, измеренный в Pb—Pb столкновениях. Спектры, измеренные двумя независимыми методами, с помощью калориметра PHOS и методом фотонной конверсии, находятся в согласии друг с другом. Нами показано, что предсказания пертурбативной КХД хорошо описывают рождение π^0 и η мезонов в протон-протонных столкновениях при $\sqrt{s} = 0.9$ ТэВ, но переоценивают их при $\sqrt{s} = 2.76$ и 7 ТэВ. Нами представлен спектр ω мезона в протон-протонных столкновениях при $\sqrt{s} = 7$ ТэВ, а также отношение ω/π^0 , которое согласуется с результатами по измерению этого отношения в экспериментах на более низких энергиях. Рождение π^0 мезонов в Рb—Pb столкновениях при $\sqrt{s_{NN}} = 2.76$ ТэВ подавлено сильнее, чем при энергиях RHIC.

Данная работа была частично поддержана в рамках гранта РФФИ 12-02-91527.

СПИСОК ЛИТЕРАТУРЫ

- 1. Sassot R. et al. Phys. Rev. D. 2010. V. 82. Chiappetta P. et al. Nucl. Phys. B. 1994. V. 412. P. 3–38.
- 2. *Abelev B. et al.* [ALICE Collab. Phys. Lett. B. 2012. V. 717. P. 162.
- 3. *Dellacasa G. et al.* Tech. Des. Rep. CERN/LHCC 99-4. 1999.
- 4. Aamodt K. et al. [ALICE Collab. JINST. 2008. V. 3.
- 5. *Alme J. et al.* Nucl. Instrum. Meth. A. 2010. V. 622. P. 316.
- 6. Aurenche P., Fontannaz M., Guillet J.P., Kniehl B.A., Werlen M. Europ. Phys. J. C. 2000. V. 13. P. 347.
- 7. Adare A. et al. Phys. Rev. C. 2011. V. 84.
- 8. Aggarwal M.M. et al. Phys. Rev. Lett. 2008. V. 100.
- 9. Adare A. et al. Phys. Rev. Lett. 2008. V. 101.
- 10. *Horowitz W.A.* Int. J. of Mod. Phys. E. 2007. V. 16. P. 2193–2199.
- 11. Chen X.-F. et al. Phys. Rev. C. 2011. V. 84.
- Sharma R. et al. Phys. Rev. C. 2009. V. 80. Neufeld R.B. et al. Phys. Let. B. 2011. V. 704. P. 590.

Production of π^0 Mesons in *pp* and Pb–Pb Collisions in the ALICE Experiment at the LHC

D. S. Blau (ALICE Collaboration)

National Research Centre Kurchatov Institute, pl. Akademika Kurchatova 1, Moscow, 123182 Russia

e-mail: Dmitry.blau@cern.ch

Received May 30, 2013

The spectra of π^0 , η , and ω mesons produced in proton-proton collisions, as well as the spectrum of π^0 mesons produced in Pb-Pb collisions, measured in the ALICE Experiment at the LHC. The π^0 and η mesons are reconstructed through their two-photon decays using two complementary methods, electromagnetic calorimetry and photon conversion. The results obtained by two methods are in agreement with each other. The nuclear modification factor (R_{AA}) of π^0 mesons in Pb-Pb collisions at various collision centralities is compared to the low-energy measurements and theoretical predictions.

Keywords: gamma spectrometer, electromagnetic calorimeter, collisions of heavy ions, quark–gluon plasma, neutral mesons